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1 Introduction

The study of longitudinal categorical data enjoys great popularity in social sciences, for
example to track the behaviour of consumers, to examine the cognitive processing of students
or to follow professional careers. Longitudinal categorical data typically track chronologically
ordered categorical values of multiple individuals over a time interval. Such data has been
classified in a variety of different types. A useful distinction to situate this article is between
state sequences and event sequences (Ritschard, Gabadinho, Studer, & Miiller, 2009). A
state, such as being jobless, defines the situation of an individual which can be measured
at any time and which lasts for a certain period. An event, such as ending a job or getting
married, occurs at a given time point. An event does not persist, but provokes, possibly
in conjunction with other events, a state change. Two major aspects differentiate event
sequences from state sequences. First, in state sequences the position of the recorded value
conveys time information so that we can know duration from the difference between two
positions. This is not the case in event sequences. Secondly, while each individual can
only be in one single—possibly complex—state at each time point, multiple events can
occur simultaneously. State sequences are nicely rendered by stacking colored bars or line
segments each of length proportional to the duration in the corresponding state. Since events
do not have duration, event sequences are much harder to represent graphically. This article
introduces a new plot primarily intended for such event sequences, the aim being to render
the ordering of the elements in the sequences including possible simultaneous occurrences
(Figure 1, right panel). Although the plot can optionally reflect time, it basically requires
only information about the ordering of the observed values and could, therefore, be used for
rendering any type of sequences of categorical elements.

The analysis of event sequences can concern three main different aspects: the timing,
the sequencing and the quantum of events (Billari, Fiirnkranz, & Prskawetz, 2006). As
demonstrated by Figure 1, the proposed plot is especially useful for uncovering sequencing
patterns. In the right panel plot, the first coordinate gives the first event—or first set of
simultaneous events—in the sequence, the second coordinate the next event, and so on. This
right panel plot clearly exhibits that, for the 1930-39 birth cohort, the first union most often
coincides with the first marriage, and that the first birth most often occurs only after both
the leaving home and the marriage. Incorporating the timing information often renders the
plot too cluttered to be really useful as shown by the left panel. Since it allows for multiple
points—the simultaneous events—on any of the parallel coordinates, the plot is not a true,
but a pseudo parallel coordinate representation.

Event data organization An event sequence can be defined as a strictly ordered list
of transitions (sometimes known as transactions), where each transition is itself a set of
simultaneous unordered events. The necessary information about the order of the events
can be stored in vertical tabular form as in Zaki (2001) with one row for each observed event
and at least three columns: A first column for the individual’s identity label, a second one for
the event name (the categorical value) and a third one reporting the rank order of occurrence
of the transition the event belongs to. Table 1 shows an example of such a vertical tabular
organization where we have also reported the time stamp (Age) from which we derived the
rank order of occurrence.
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Figure 1: Parallel coordinate plot of Scandinavian family life events of the 1930-39 birth
cohort. Left panel, alignment on event time stamps. Right panel, alignment on
rank orders of occurrence of the events.

The example data in Table 1 reports the events amongst graduating university, first em-
ployment, first unemployment, first marriage, and first child experienced between age 15 and
45 by individual 1. To describe such a sequence we will also use the notation (graduating
university)!—(first employment, first marriage)?— (first child)® where the terms inside paren-
theses are events, each whole parenthesis defines a transition, and the superscripts stand for
the rank order of occurrence.

By ranking from the beginning of the sequence we implicitly left align the event sequences.
More specifically, we upwardly number time points in which one or more events occurred,
starting with giving a 1 to the earliest of those time points. For individual 1 in Table 1
there are three event-occurrence time points: 25, 27 and 30. Correspondingly, ‘graduating
university’ is assigned order position 1, both ‘first employment’ and ‘first marriage’ are
assigned a 2 and ‘first child’ is assigned a 3. Different alignments could be considered as well
such as right aligning on the last event of each sequence, or aligning on the occurrence of
a given event, ‘first employment’ for instance. For right-aligned order positions, we would
assign order 1 to the time of occurrence of the last event and number the time points
backwards.

Individual Event Age Rank
1 graduating university = 25 1
1 first employment 27 2
1 first marriage 27 2
1 first child 30 3
2

Table 1: Extract of a fictitious event sequence data set.



Related methods Methods for analyzing the ordering of events vary among disciplines. A
long-standing method in socio-demographic life-course studies is treating a selection of pre-
defined sequence patterns as categorical values of a dependent variable and studying their
relationships with explanatory variables by means of log-linear regression models (Hogan,
1978; Marini, 1984) or classification trees (Billari, 2005). Multistate models (Willekens, 2006)
and especially flowgraphs (Huzurbazar, 2004) are useful for exhibiting the relational structure
between events including possible feedback events. The data-mining community has empha-
sized the search of frequent sub-sequences and association rules (Agrawal & Srikant, 1995;
Mannila, Toivonen, & Inkeri Verkamo, 1997). Moen (2000) and Studer, Miiller, Ritschard,
and Gabadinho (2010) developed dissimilarity measures for event sequences which account
for the ordering of events. Such dissimilarity measures give access to the whole palette of
dissimilarity-based methods, such as cluster analysis (Reynolds, Richards, de la Iglesia, &
Rayward-Smith, 2006), self organizing maps (Massoni, Olteanu, & Rousset, 2009) or dis-
crepancy analysis (Anderson, 2001; Studer, Ritschard, Gabadinho, & Miiller, 2011).

This article is focusing on a graphical method. The intention is to provide a simple,
understandable plot for exploring the diversity of distinct sequence patterns of a target
population. The plot should facilitate the identification of standard patterns, including
simultaneity of events, while reflecting at the same time all the diversity of the observed
patterns. The plot should also be helpful for group comparisons.

Since we consider categorical sequences, let us first stress the possibilities of representing
sequences with plots for categorical variables. Bar, mosaic or association plots (Friendly,
2000; Hartigan & Kleiner, 1984) are helpful to render distributions of categorical data and
highlight the association between pairs of categorical variables. By cross tabulating event
occurrences with the order position, such plots can visualize how events are distributed
among the successive positions but do not render the individual sequence patterns and their
diversity. Alternatively, by considering the event occurring at each successive position as a
categorical variable, a set of sequences can be seen as a series of categorical variables and we
could resort to some kind of parallel coordinate plots to visualize the successions of events
and the relations between the events at the successive positions. Examples of categorical
parallel coordinate plots are the plot proposed by (Yang, 2003) for rendering itemsets, the
hammock plots (Schonlau, 2003) and parallel sets (Kosara, Bendix, & Hauser, 2006).

Among plots specifically designed for sequence data, there are indeed all nice plots for
state sequences (Brzinsky-Fay, Kohler, & Luniak, 2006; Gabadinho, Ritschard, Miiller, &
Studer, 2011). Those plots require data on the duration of the states and do not apply for
sequences made of elements such as events which do not have durations. Three suggestions in
the literature can potentially be applied to any kind of sequences including event sequences.
The first class of graphics, known as life lines or calendar plots, arrange color-coded event
symbols along horizontal lines (Wang, Plaisant, & Shneiderman, 2010; Wongsuphasawat
et al., 2011). The second class of graphics are directed graphs (Hébrail & Cadalen, 2000;
Huzurbazar, 2004), such as the graphical representation of a flowgraph, which connect event
nodes with directed line segments along the event order. The third class of plots make use
of the already discussed categorical parallel coordinate principle. Yang (2003), for instance,
uses such an approach for sequential patterns. For sequence data, a parallel coordinate plot
can be seen as an adaptation of the so called ‘spaghetti plot’ used for rendering multiple
time series. The plot consists in reporting the position in the sequence (or time point) on
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the x-axis and assigning a vertical coordinate to each event-category. Each unique sequence
pattern is then visualized as a polyline connecting the successive events in the exact order
they appear in the sequence. Varying line widths can be used to visualize the support of
each event-to-event segment.

None of the existing plots fully fits all of our objectives, i.e., get a plot which can trace the
individual sequences and their diversity, can render simultaneous events and allows for easy
group comparisons. We found that the principle of categorical parallel coordinates would
be, with some crucial extensions, the most convenient way to meet our goals.

The contribution of the article is an extension of the categorical parallel plot (Kosara et
al., 2006; Schonlau, 2003; Yang, 2003) to categorical sequence data. The main extending
features are the followings: (i) A translation-arrangement which allows rendering simultane-
ous events and facilitates the tracing of individual sequences by avoiding overlapping lines;
(ii) the merging of embeddable sequences; (iii) the accounting of weights and zero-event se-
quences; and (iv) filter instruments and criteria to improve the exploratory power of the
plot.

Organization of the article In the upcoming section, we first explain the basic plot
design in detail. Subsequently, we introduce some adjustments to better highlight the in-
teresting order patterns and apply the plot on two real data sets. In the first and main
application example, we render family life event data and compare our proposition with the
basic parallel coordinate plot. For the second application example, we consider ordinal state
sequence data to reveal that the proposed plot can also prove useful for non-event sequences
and can render time alignments. Finally, we summarize our findings and discuss the scope
and limits of the approach.

2 The decorated categorical parallel coordinate plot

The proposed graphic renders event order patterns as slightly displaced lines in a scatter
plot. The line displacement is necessary to unambiguously render each distinct sequence
and to avoid that sequences or portions of sequences hide other ones. The rank orders of
occurrence are located on the z-axis and the event categories at evenly spaced positions on
the y-axis. The coordinate assignment for the event categories is basically arbitrary and
could be for instance the alphabetical order. The readability of the solution will, however,
most often depend on this coordinate order and could be improved by a suitable choice of
this order. A meaningful solution is for example to arrange the event categories in their most
frequently observed order of occurrences. This is the solution we adopted in the application
in Section 4.1, while in Section 4.2 we simply retain the ordinal order of the states.

The initially empty scatter plot is first covered with small sized light gray rectangular
areas at the intersections of whole numbered = and y coordinates. These areas are called
translation zones and they serve for tracking the translation arrangement across grid points.
The same translation arrangement is shared by all translation zones. It is built as follows:
For each unique event order pattern, a solid square of size proportional to the (possibly
weighted) sample frequency of the order pattern is allocated. Next, the whole set of these
squares is algorithmically arranged in the zone and optimally resized to fit in the zone.
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Figure 2: Basic plot of the three ordering patterns among 100 event sequences.

The placing procedure first collects the largest solid square of each sequence pattern and
sorts them in decreasing order. Then, starting with the largest of the collected squares,
the procedure successively assigns a random location in the remaining free space to each
of the squares. In case the remaining space is insufficient, the size of all solid squares are
proportionally reduced by the smallest factor allowing to fit all of them in the zone. This
gives for each unique event order pattern a unique square area at the same relative position
in each concerned translation zone.

The plot is then finalized by successively plotting the unique event order patterns. For
each pattern, first its corresponding event-occupied squares in the translation zones are
colored and then these squares are connected with line segments along the event order.
The widths of the line segments are also adjusted to the sample frequency but they are
slightly thinner than the event-squares for readability. Simultaneous events appear as vertical
segments. To maintain the line-continuity in these cases, we connect the precedent event with
the lowest event and the subsequent event with the highest one of that vertical segment (or
optionally conversely). In the exceptional case where a same event would occur several times
at a same position the multiple occurrences would be reflected by a ‘sunflower’ inscribed in
the concerned square. Finally, zero-event sequences, i.e., empty sequences corresponding to
cases which do not experience any event, are reflected by a square outside the bottom-left
translation area.

Figure 2 presents the categorical parallel coordinate plot for a fictitious set of 100 event
sequences with three unique event order patterns. The lower line represents 21 sequences
with a common order pattern which starts with event A at position 1, then has events A and
B at position 2 and ends with event B at position 3. The thick line represents 65 identical
sequences B-C and the thin line at the top four sequences B-C-C. There are 10 zero-event
sequences which are rendered by the black square south-west of the bottom-left translation
zone.
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Figure 3: Readability improvements. Highlighting patterns with frequency above a selected
threshold (left); Highlighting most frequent patterns until their cumulated fre-
quency exceeds a selected threshold (middle); Embedding shorter sequences into
longer ones (right).

3 Improving readability

Generating plots as described so far for full-scaled real data sets we will most often get
graphics cluttered with too many lines to be able to distinguish patterns of interest. In this
section, we propose two adjustments to improve the plot readability in presence of a high
number of distinct patterns and thus facilitate the graphical exploration.

Emphasizing interesting event order patterns In order to emphasize event order pat-
terns of interest, we propose to gray less interesting patterns and lay them in the background.
The level of interest will typically be measured by the frequency of the pattern, but could as
well be, for example, the inverse frequency if we are interested in atypical patterns, or some
measure of the strength of association between the pattern and a target variable such as the
sex, birth year or income of the concerned individuals.

Using the frequency, the threshold for coloring event order patterns can be set in two
alternative ways: either as a minimum value that should be satisfied to allow for coloring, or
as a global cumulated value that should be reached by the whole set of highlighted patterns.

The first solution colors event order patterns over a given frequency threshold in intense
colors and grays the remaining patterns. This adjustment was applied in the leftmost plot of
Figure 3 using a level of 5%. As a result, the previously saturated thin line at the top, which
represents 4 out of the 100 sequences, appears in gray. All other patterns keep their original
contrast level. In addition, the total number of highlighted patterns and their cumulated
frequency are automatically displayed below the plot title to provide some quantitative
information.

The second solution based on cumulated values consists in coloring patterns in decreasing
frequency order until their cumulated frequency reaches the set threshold. As an illustration,



the middle plot in Figure 3 was obtained by setting the threshold for the cumulated value as
50%. In that example, a single pattern is sufficient to represent at least 50% of all sequences.
As in the left plot, the total number of highlighted patterns and their cumulated frequency
are displayed with the plot title.

The first solution is very general and can be used with any interestingness measure. The
second proposition based on cumulated values is less general. Indeed, it requires that the
used measure of the interest level can be summed up over patterns, which is not the case,
for example, for association measures. We should be careful, therefore, to not use it when
cumulated values of the considered interestingness measure do not make sense.

Plotting the non-embeddable event order patterns The second adjustment is a
reduction of the number of plotted lines without information loss. This is achieved by drawing
only non-embeddable event order patterns. An event order pattern S; is embeddable into a
pattern Sy if S, can be transformed into the exact form of S; by cutting prefixes or suffixes;
i.e., by cutting a starting or ending substring from the sequence S,. The non-embeddable
patterns are those unique event order patterns which cannot be embedded into any other
one.

The embedding is visualized by adjusting the line widths of shared partial line segments.
The rightmost plot in Figure 3 shows that plotting the non-embeddable event order patterns
reduces the number of lines from three to two for the toy example in Figure 2. The thickest
line in Figure 2 is here embedded in the formerly thinnest line. Consequently, the line
segment between position 1 and 2, which is shared by 65+ 4 = 69 sequences, is much thicker
than that between positions 2 and 3 which is shared by four out of the 69 sequences only.

The embedding trick raises two difficulties: First, the trick implies a technical ambiguity.
Short event order patterns can often be embedded into more than one non-embeddable
event order candidates. The solution we suggest in that case is to embed the pattern into
the most frequent pattern among the available candidates. Doing so, instead of distributing
them evenly over all candidates for example, will emphasize the commonness of the shared
segments. Second, the interpretation becomes ambiguous when two or more event orders
with both different start and end positions are embedded in the same non-embeddable event
order pattern. For example, the three sequences A-B-B-*, *-B-B-C and A-B-B-C, where
a ‘*’ indicates an empty position, can be merged into the single non-embeddable sequence
A-B-B-C with a weight of 2 for the paths A-B and B-C, and a weight of 3 for the path
B-B. The same non-embeddable sequence results from the three sequences A-B-B-C, A-B-
B-C and *-B-B-* and it is thus not possible to univocally retrieve the original sequences
from the non-embedded sequence; hence the ambiguity. Therefore, we recommend to use
the embedding adjustment only with either left-aligned or right-aligned sequences. For left-
aligned sequences, the embedding should be checked by cutting suffixes only, and for right-
aligned sequences by cutting prefixes only.

Combining both adjustments Both adjustments, i.e., plotting only non-embeddable
patterns and graying out less interesting patterns can be applied together on a same plot. In
that case, when one or more patterns have been embedded in a longer one, the whole non-
embeddable event order pattern is highlighted whenever its most frequent segment fulfills



the interestingness constraint. As a consequence, some non-embeddable patterns which do
not themselves reach the minimum interest level may be highlighted just because some other
patterns were embedded in them.

4 Application

We illustrate the scope of the proposed parallel coordinate plot for group comparison with
two applications. The brst one demonstrates the interest of the plot for analyzing the changes
in the sequencing of family life events over birth cohorts. The second illustration is about
marijuana use by U.S. teenagers and shows how the plot can serve for comparing female and
male trajectories described by state sequences.

4.1 Family life event histories

As a brst application, we consider family-life event sequences of Scandinavians from the 2006
European Social Survey (ESS) Round 3 data and are interested in whether the ordering of
family-life events is historically stable or if there are dierences between age-groups. The
data preparation was the following: First, we extracted the data-subset of the Scandinavian
participants (Swedes, Norwegians and Danes) of the two age-groups 1930-1939 and 1950-
1959. We then retrieved for each retained person the year of occurrence of the following
events: leaving parental home, bPrst union, brst marriage and Prst childbirth, as described
in Billari and Liefbroer (201Q. Events after age 45 were omitted to allow a consistent
comparison between the two age groups. Finally, we left aligned the event sequences to
debne the order positions. For example, the Danish participant with id 100434 (a female
born in 1931) left the parentsO house in 1950 and, in 1953, she started to live with a partner,
married and gave birth to her brst child. Consequently, position 1 was assigned to event
Leaving Homeand position 2 to each ofFirst Union, First Marriage and First Child which
occurred the same year. The bPnal used data consists of 1372 individuals and includes a total
of 5049 events. To account for the ESS sampling scheme, frequencies and hence line widths
will account for the provided Country and Designweights.

The decorated categorical parallel coordinate plotNwithout embeddingNof the event
order patterns is shown in Figure4. Event orders of cohort 1930-1939 are on the left panel
and event orders of cohort 1950-1959 on the right panel. Since line widths and point sizes
are adjusted for the within group weighted frequencies, the two cohorts can be compared
even though there are much less individuals in cohort 1930-1939 than in cohort 1950-1959.
The order of the y-alphabetNthe events consideredNwas set so that most line-patterns
monotonically increase along the position axis. To emphasize the most frequent event order
patterns, all patterns that do not represent a minimum of 5% of the individual sequences in
the group are grayed out. Since all frequencies are weight-adjusted, this threshold applies
indeed to weight-adjusted pattern frequencies.

The two plots in Figure 4 widely di! er. For the older cohort, there are only four high-
lighted lines. Three of them run very steeply because they each have two or three simultane-
ous events. The most frequent pattern is represented by the thickest line and it corresponds
to individuals who brst left parental home, then later started a union and married in the same
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Figure 4. Cohort comparison of Scandinavian family life event orders. Highlighted lines
describe order patterns with a weighted frequency above 5%.

year, and later gave birth to a Prst child. Although we can observe very diverse patternsN
the grayed linesNthe ordering of life events is clearly dominated by the four colored patterns
which represent together 65% of all sequences.

The sequences followed by the cohort 1950-1959 are much less standardized. We observe
more diversity among the frequent patterns in the right panel. There are eight patterns
with a within group frequency above 5% and only two of them were already highlighted
standards in the plot for cohort 1930-1939. None of them imposes itself in a proportion
equivalent to the most frequent blue pattern of the older cohort. The most frequent pattern
for cohort 1950-1959 is the green diagonal which corresponds to brst leaving parental home,
later starting a union, again later marrying and later again having the prst childbirth. The
eight highlighted patterns represent together 48% of all sequences, that is, much less than
the 625% represented by the four common patterns of the older cohort. In three of the eight
emerging standardsNnewly highlighted patternsNthe brst child is not proceeded by the
Prst marriage. The plot thus renders how the norms in the organization of life trajectories
changed across cohorts: For the younger generation, getting married is no longer considered
as a prerequisite for giving childbirth.

Zero-event sequences play only a marginal role in these data. There are only three cases
in cohort 1930-1939 and one case in the 1950-1959 cohort which do not experience any
event. Hence, the points representing them on the bottom left become visible only with
strong zoom.

The superiority of our proposition over the basic parallel coordinate plot appears clearly
when we compare the basic plot of sequences of the 1950-1959 cohort shown in the left
panel of Figure5 with the plot in the right panel of Figure 4. In the basic plot, the plotted
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Figure 5: Alternative plots of the 1950-1959 cohort. Left panel: basic parallel coordinate
plot. Right panel: non-embeddable event order patterns.

lines overlap, which makes it impossible to track single patterns. Even worse, basic parallel
coordinates could be misleading regarding patterns actually not observed. For example, the
pattern (First Union, First Child) *! (Leaving Home, First Marriage¥ is not present in the
data set while the plotted line segment may suggest it is. This problem does not occur
with our proposition because, as can be seen in Figutethe distinct sequence patterns are
jittered and can be univocally tracked by following up the corresponding small squares at
identical position in the translation zones.

In Figure 4, the plot for the Scandinavian 1950-1959 cohort looks somewhat cluttered
because of the many patterns satisfying the minimum frequency condition. A way to
treat this problem is by plotting the non-embeddable event order patterns only. The re-
sulting plot is shown in the right panel of Figure5. In that plot, the pattern (Leaving
Home)'! (First Union)?2! (First Child) 3, for example, has been embedded into the pattern
(Leaving Home}! (First Union)?! (First Child) 3! (First Marriage)*, and both patterns are
visualized by a same single line. The method reduces the total number of lines from 55 to
37 and the number of highlighted patterns from 8 to 6. Due to these changes, the square
points within the translation zones have been arranged !derently and the widths of the
event-squares and line segments!dir from those in Figure4.

4.2 Marijuana use among U.S. teenagers

The aim of this second illustrative application is to demonstrate the potential of our plot
for rendering state sequences. Theldérence with event sequences is that the position in a
state sequence conveys time information and that simultaneous states cannot occur. In this
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application the x-axis reports ages.

We consider data about the use of marijuana taken frorhang, McDonald, and Smith
(1999 and based on the brst bve annual waves (1976-1980) of the U.S. National Youth
Survey (Elliott, Huizinga, & Menard, 1989. The data concern adolescents aged 13 at the
prst wave (1976) and report adolescentsO marijunana-use state at the successive ages between
13 and 17 years old. The marijuana use is a categorical ordinal variable with three levels
(OneverO, Ono more than once a month®, Omore than once a monthQ) obizemedebyal.
(1999 by collapsing the nine levels of the original marijuana-use scale.

female, n = 120 male, n =117
colored: 4 of 29, cum. freq. = 70% colored: 6 of 40, cum. freq. = 66.7%

>1 amonth —

<1 amonth —

mever | e || 'T————a

13 14 15 16 17 13 14 15 16 17
Age Age

Figure 6: Marijuana use of U.S. teenagers between ages 13 to 17. The trajectories shared
by at least three adolescents in the group are highlighted in!dérent colors.

Figure 6 exhibits the evolution of marijuana use by females and males. Colored patterns
are the unique patterns shared by at least three adolescents (3%) in each group. The most
frequent trajectory is to never use marijuana between ages 13 to 17 for both genders. Look-
ing at the other patterns including the greyed lines we observe a higher diversity among
trajectories followed by males. There are 40 unique trajectories for males versus 29 for fe-
males. The plots also reveal, for both groups, a higher tendency to increasing marijuana
use than decreasing it. Focusing on the colored linesNmost frequent patterns, we observe
what is the main conclusion found byLang et al. (1999, i.e., a higher risk for males to use
marijuana. More specibcally the plots reveal a tendency for males to start with marijuana
use earlier than females.

In this example, all sequences are complete and, therefore, right- and left-aligned. When
all sequences are complete, no unique sequence can be embedded in another unique se-
guence. Plotting only non embeddable sequences would thus produce the same plot. Shift-
ing sequences of terent length in order to left or right align them we would lose the time
alignment. Thus, the embedding trick is useful for time-aligned sequences only when the
sequences are of derent length and all of them either start or end at the same time.

12



5 About the plot usage

The plot has been implemented in th&raMineRpackage Gabadinho et al, 2017) for the R
environment for statistical computing and graphicsiR Core Team 2012 which can be freely
installed from the Comprehensive R Archive Network (CRAN http://cran.r-project

.org/ ). The plot is generated with theseqgpcplot function which ol ers a series of arguments
for controlling, among others, the placement and widths of the points and lines as well as
their coloring, the Pltering thresholds and position versus time alignment. A simple argument
also permits to highlight a predePned selection of sequence or sub-sequence patterns. The
complete list of arguments is documented in the online help ble of tsegpcplot function
where the user also bnds several examples. Unlike the tools proposedragg (2003 or
Wang et al. (2010 for example, our implementation is not interactive, the objective being
instead to produce high quality graphics ready for inclusion in publications.

The privileged and default representation is obtained by aligning the successive elementsN
states or transitionsNin each sequences on their rank order of occurrence in the sequence.
A possible alternative is to align the states/events on their time of occurrence rather than
on the rank order of occurrence. By using time alignment we can render transition times.
Practically, however, when the number of time positions increases the resulting graphic may
become very cluttered because of the variability in the timing of similarly sequenced events.
The left panel in Figure 1, for example, gives the time aligned representation of the Scandi-
navian family life event data used in Sectiod.1. The sequences shown are those for cohort
1930-1939. The time-aligned plot exhibits a high diversityNessentially a timing diversityN
of the trajectories which contrasts with the relatively low sequencing diversity shown by the
right panel. We learn from the time-aligned plot that leaving home starts about at 14 years
old, and that the events brst union, brst marriage and Prst child occur since age 17 but be-
come much more frequent after 20 years old. Nevertheless, the plot looks cluttered and other
plots such as survival curves or life and calendar linegvang et al., 2019 Wongsuphasawat
et al., 2010 could be more appropriate for rendering the timing. By transforming event
sequences into state sequences we could also resort to plots for state sequences such as index
plots (Gabadinho et al, 2011 which explicitly render timing and durations.

Although there are no technical limitations to the scalability of the plot, scalability
becomes an issue regarding the usefulness of the plot. The limitation is not that of the total
number of sequences but that of the number of unique sequences. The number of unique
sequences is intimately linked with the sequence length and the size of the alphabet, i.e., the
number of distinct events or states. The larger the alphabet, the less chances we have to bnd
out a signibcant proportion of sequences sharing a common pattern. The same is true for the
sequence length: The longer the sequence, the lower the chances of two sequences following
the same pattern. The solution to Pnd out regularities in case of a large alphabet would be
to merge close elements of the alphabet. In case of long sequences, the solution could be
to use a rougher time granularity which would transform the dierent sequencings of events
occurring in a given laps of time into a unique set of simultaneous events. To give an order of
magnitude, the alphabet should not exceed about 10. Likewise, the plot may become hard
to read when sequences contain more than 10 distinct successive elements. With shorter
sequences we could ard a larger alphabet and reciprocally with a small alphabet we could
al ord longer sequences.
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6 Conclusion

The decorated parallel coordinate plot proposed in this article is a powerful tool for exploring
how elements are typically ordered in a set of sequences. The Pltering mechanisms which dim
out less interesting patterns together with the embedding trick, permit to clearly highlight
the most frequent patterns while still rendering the whole diversity of the observed patterns.
Although the plot is primarily designed for event sequences where only the position in the
sequence rather than the exact time matters, the plot can also render time aligned events
and be used with other types of categorical longitudinal data such as categorical panel data
for example. The proposed plot oers the following salient features: A pattern jitter mech-
anism combined with a system of translation zones, point and line widths rel3ecting pattern
frequencies, the possibility to render non-embeddable patterns only, a straightforward way
of accounting for weights, the rendering of zero-event sequences, and tunable highlighting of
interesting patterns. Unlike the basic parallel coordinate plot as used for instance bfang
(2003, our plot permits to track individual patterns, can render patterns with simultaneous
eventsNa common situation in life-course analysis for exampleNand reveals all the diversity
of the rendered patterns.

To get an idea of the interest of the plot for end users, we presented it to social scientists
involved in life-course analysis and to experts from the data mining domain. Life course
experts found the display intuitive, identiPed potential application and suggested, for ex-
ample, the family-life events application presented in Sectioh.l Experts in data mining
provided more mitigated feedback. They agreed about the ease of interpretation of the plot
for the examples we provided but criticized its lack of scalability. Indeed, data mining is
often concerned with huge data sets consisting of hundred thousands sequences to which the
plot would be hardly applicable for the reasons addressed in Sectign

As already mentioned, the decorated parallel coordinate plot is implemented as a function
of the TraMineR Rpackage (Gabadinho et al, 2011 freely downloadable from the Compre-
hensive R Archive Network (CRAN,http://cran.r-project.org/ ).
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